Coupling of asymmetric division to polar placement of replication origin regions in Bacillus subtilis.

نویسندگان

  • P L Graumann
  • R Losick
چکیده

Entry into sporulation in Bacillus subtilis is characterized by the formation of a polar septum, which asymmetrically divides the developing cell into forespore (the smaller cell) and mother cell compartments, and by migration of replication origin regions to extreme opposite poles of the cell. Here we show that polar septation is closely correlated with movement of replication origins to the extreme poles of the cell. Replication origin regions were visualized by the use of a cassette of tandem copies of lacO that had been inserted in the chromosome near the origin of replication and decorated with green fluorescent protein-LacI. The results showed that extreme polar placement of replication origin regions is not under sporulation control and occurred in stationary phase under conditions under which entry into sporulation was prevented. On the other hand, the formation of a polar septum, which is under sporulation control, was almost invariably associated with the presence of a replication origin region in the forespore. Moreover, cells in which the polar placement of origin regions was perturbed by deletion of the gene (smc) for the structural maintenance of chromosomes (SMC) protein were impaired in polar division. A small proportion ( approximately 1%) of the mutant cells were able to undergo asymmetric division, but the forespore compartment of these exceptional cells was generally observed to contain a replication origin region. Immunofluorescence microscopy experiments indicated that the block in polar division caused by the absence of SMC occurred at or prior to the step of bipolar Z-ring formation by the cell division protein FtsZ. A model is discussed in which polar division is under the dual control of sporulation and an event associated with the placement of a replication origin at the cell pole.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex polar machinery required for proper chromosome segregation in vegetative and sporulating cells of Bacillus subtilis

Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram-positive bacterium Bacillus subtilis. In addition to ...

متن کامل

A mechanism for polar protein localization in bacteria.

We investigate a mechanism for the polar localization of proteins in bacteria. We focus on the MinCD/DivIVA system regulating division site placement in the rod-shaped bacterium Bacillus subtilis. Our model relies on a combination of geometric effects and reaction-diffusion dynamics to direct proteins to both cell poles, where division is then blocked. We discuss similarities and differences wi...

متن کامل

Bipolar Localization of the Replication Origin Regions of Chromosomes in Vegetative and Sporulating Cells of B. subtilis

To investigate chromosome segregation in B. subtilis, we introduced tandem copies of the lactose operon operator into the chromosome near the replication origin or terminus. We then visualized the position of the operator cassettes with green fluorescent protein fused to the Lac1 repressor. In sporulating bacteria, which undergo asymmetric cell division, origins localized near each pole of the ...

متن کامل

FtsA mutants of Bacillus subtilis impaired in sporulation.

Spore formation in Bacillus subtilis involves a switch in the site of cell division from the midcell to a polar position. Both medial division and polar division are mediated in part by the actin-like, cytokinetic protein FtsA. We report the isolation of an FtsA mutant (FtsA(D265G)) that is defective in sporulation but is apparently unimpaired in vegetative growth. Sporulating cells of the muta...

متن کامل

Structure of the Phosphatase Domain of the Cell Fate Determinant SpoIIE from Bacillus subtilis

Sporulation in Bacillus subtilis begins with an asymmetric cell division producing two genetically identical cells with different fates. SpoIIE is a membrane protein that localizes to the polar cell division sites where it causes FtsZ to relocate from mid-cell to form polar Z-rings. Following polar septation, SpoIIE establishes compartment-specific gene expression in the smaller forespore cell ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of bacteriology

دوره 183 13  شماره 

صفحات  -

تاریخ انتشار 2001